

Abstracts

An asymmetric GaAs MMIC dual-gate mixer with improved intermodulation characteristics

Hyun Il Kang, Jeong Hyun Kim, Young Woo Kwon and Jae Eung Oh. "An asymmetric GaAs MMIC dual-gate mixer with improved intermodulation characteristics." 1999 MTT-S International Microwave Symposium Digest 99.2 (1999 Vol. II [MWSYM]): 795-798 vol.2.

An MMIC single-ended mixer with improved intermodulation characteristics has been developed by using a novel approach of combining two FETs with different gate width in a cascode connection. The fabricated circuit operating at the PCS (personal communication system) frequency band of 1.855 GHz shows a conversion gain of 5 dB at an LO power of 0 dBm and LO to RF isolation over 25 dB in a condition of low power consumption ($V_{DD}=3$ V, $I_{DS}=5.5$ mA). The measured 3rd order intermodulation distortion without IF output matching is -44 dBc at the RF power of -20 dBm, which shows the improvement by 20 dB compared to that obtained from the conventional symmetric dual-gate mixer realized by cascode connection of two FETs with same gate width. A complete harmonic balance simulation has been performed to explain the improvement in the intermodulation characteristics.

[Return to main document.](#)

Click on title for a complete paper.